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1. Introduction 

Proxemy Research had a grant fiom NASA to perform science research on upwelling and 
volcanism on Venus. This was a 3 year Planetary Geology and Geophysics grant to E. Stofan, entitled 
“Coronae and Large volcanoes on Venus.” This grant NAG5-11535 closes on 12/31/05. Here we 
summarize the scientific progress and accomplishments of this grant. Scientific publications and abstracts 
of presentations are indicated in the final section. This was a very productive grant and the progress that 
was made is summarized below. Attention is drawn to the publications and abstracts published in each year. 

Volcanism and tectonism are the dominant geological processes that have shaped the surface of Venus, 
as revealed by the Magellan data. Coronae and large volcanoes are of particular significance, as they 
provide constraints on both models of surface and interior evolution. Coronae are volcano-tectonic features 
believed to form over small-scale mantle upwellings [Basilevsky et al., 1986; Pronin and Stofan, 1990; 
Stofan et al., 1991; Squyres et al., 1992; Janes et al., 19921. A continued exploration of their great 
variations in morphology (e.g., Stofan et al., 1997; Jurdy and Stefanick, 1999; Stofan et al., 2001a) and 

the geologic history of Venus, the planet’s overall thermal evolution, and variations in such parameters as 
crustal and lithospheric thickness. Large volcanoes .;ith basal diameters greater than io0 km are a typical 
form of volcanism on Venus. Venusian large volcanoes tend to have heights of 2-3 km, and complex 
summit regions yead  ~t a1 1993; CTILTIPI P? n!. I???; Et&z mt d., 2K?!$j. 7?lc v ~ k i i c s  of k g e  
voicanoes at Venusian hotspot rises are comparable to volcanic volumes produced at terrestrial hotspot 
islclnii r;‘mins [Stofan er ai., i995j. i o  understand further the mphcahons of large volcanoes for the overall 
geologic history of Venus, there is a need to investigate more the morphology of these volcanoes, define 
their magma storage systems and how they may have changed with time, and their overall evolution. We 
have recently demonstrated that, while large volcanoes have many similarities, their differences can be used 
to define variations in their plumbing systems over time [Stofan et al., 2001bl. 

The proposal consisted of two tasks, one examining coronae and one studying large volcanoes. The 
corona task (Task 1) consisted of three parts: 1) a statistical study of the updated corona population, with 
Sue Smrekar, Lori Glaze, Paula Martin and Steve Baloga; 2) geologic analysis of several specific groups of 
coronae, with Sue Smrekar and others; and 3) determining the histories and significance of a number of 
coronae with extreme amounts of volcanism, with Sue Smrekar. Task 2, studies of large volcanoes, 
consisted of two subtasks. In the first, we studied the geologic history of several volcanoes, with John 
Guest, Peter Grindrod, Antony Brian and Steve Anderson. In the second subtask, I analyzed a number of 
Venusian volcanoes with evidence of summit diking along with Peter Grindrod and Francis Nimmo. 

complex histori_es (..g., Chpp et d., 1008; SZZ&GX XX! Et&=, 1339) &ill picvide fiiritei iui6iraiu’w on 

Task 1. Studies of Coronae on Venus 
Task la .  A new statistical analysis of the updatedpopulation of coronae on Venus 
Participants: E.R. Stofan, S.E. Smrekar, L.S. Glaze, P.M. Martin, S.M. Baloga 
Under Task la: we utilized statktica! analysis to stdy fie zew, e x p d e d  mmm p~pdatio:,on [ S t ~ f a  et a., 
2001al. Applying these sophisticated analysis tools to specific t j jes  of coronae, such as topographic 
coronae, has helped to constrain the particular causes for the great variations observed in corona 
morphology and provided new insights into corona formation [Glaze et al., 2002; Stofan et al., in prep.]. 
Our statistical analysis of corona topography has produced strong results [Stofan et al., 2003; Stofan et al., 
in prep.], suggesting that the heights and basal altitudes of coronae differ between some corona topographic 
groups, which we are comparing to current models of corona formation and evolution. We compared the 
maximum height of the corona rim and interior to corona type (Type 1 vs. Type 2), topographic form, 
width, rim width, and geologic setting using statistical analysis. Our analysis of the rim heights, widths and 
basal altitudes of topographic groups 4 and 7 for Type 1 and 2 coronae indicate that the lack of a fracture 
annulus coincident with the topographic rim at Type 2 coronae could be caused by several factors: 1) a 
weak lithosphere due to high heat flux; 2) a very strong lithosphere, such that there is a small curvature and 
thus low stress at the surface; and 3) slow viscous bending (low strain rate) [Stofan et al., 2001; Glaze et al., 
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20021. We favor option (3). Our results suggest that many Type 2 coronae have rims that are higher and 
broader. We interpret this to be consistent with the rims of Type 2 coronae forming from isostatic rebound, 
a process likely to be slower than plume-related processes, producing less strain and rims with a lower 
moment of curvature. The higher rims of the Type 2 coronae are indicative of the amount of crustal 
thickening [Stofan et al., in prep.]. 

We also expected this analysis to yield results for coronae in particular regions, such as along Parga 
Chasma. Under previous proposals, we have studied Parga coronae, and have been unable to relate the 
observed variations in morphology to model predictions. Utilizing the full data sets described above, in 
particular the topography, volcanic characteristics and gravity data, we were able to demonstrate that the 
coronae in Parga Chasma do not differ from the entire population in a statistical sense [Martin et al., 2004; 
Martin et al., 20051. We also determined that their distribution was random, illustrating that their formation 
is not controlled by the Parga rift wartin et al., 2005; Martin et al., in prep.]. 
Task lb. Regional Studies of Coronae: Clusters of Topographic Coronae 
Participants: E.R. Stofan, S.E. Smrekar, A.W. Brian, J.E. Guest 

We performed regional studies of coronae to constrain the amount of resurfacing associated with 
groups of coronae [Stofan et al., 2004; Stofan et al., 20051. We found that coronae contribute 
approximately 20% to the resurfacing of Venus, as compared to about 22% fiom small edifices and 35% 
for volcanic plains with no apparent source. In chasmata regions, coronae contribute up to 38% of 
res&xiig [Stofan et id., 2OEj. The i e d t  of Ucu survey inciicaie &ai. the majority of units that have 
resurfaced Venus can be tied to a specific source, whose stratigraphic relationship with surrounding units 
caii be determined. Plains with no identifiable sources cover an average of 35% of the surface. This is 
contrary to previous work, which has suggested that Venus resurfacing is dominated by extensive, sheet- 

In association with this study, we documented the previously unrecognized fact that small edifices fields 
resurface a sipticant (22%) portion of the surface. Previous workers, focusing on large clusters of shields, 
had estimated that shield plains make up about 10% of the surface (Basilevsky and Head, 1998; Addington, 
2001). The small edifices do not appear to be the source of extensive flows, but are so ubiquitous on the 
surface that they add up to be a major source type [Stofan et al., 20051. Small edifices either appear in 
clusters within plains units (i.e., ‘mottled heated plains material’ unit, quadrangle V43 (Bender et al. 
2000)) or as mappable units with associated deposits (i.e., ‘shield field flow material’ unit of quadrangle 
V37 (Hansen and deShon 2002)). 

Coronae and small shields together resurface about 43% of the regions we sumeyed. These two 
categories of features are operatihg at two very different scales, with coronae (mean diameter 253 km 
(Glaze et al. 2002)) resurfacing on scales of at least lo4 km’ and small edifices (diameters 4 0  km) 
resurfacing on scales of <lo’ km2. For example, the corona Atete in quadrangle V40 (Chapman 1999) 
resurfaced an area greater than 630,000 lan2. Thicknesses of the units is, in most cases, not determinable, 
although many coronae have multiple, overlapping flow units (e.g., Stofan and Guest 2003). 

Eruption durations required to produce volcanic units on Venus are unknown, but terrestrial durations 
can provide a benchmark given the overall similarities between Venusian and terrestrial flows and edifices 
(e.g., Stofan et al., 2001). Based on terrestrial experience, edifices can either be monogenetic and 
constructed in 4 0  years, or they can be built up over on the order of lo6 years by numerous eruptions. 

errqlaced rapidly (days to weeks) (e.g., Shaw and Swanson 1970) or slowly (years) (e.g., Self et al. 1996). 
Without a reliable way to date flows on Venus, we can only constrain the observed activity to have 
occurred within approximately the last 750 my, assuming that the crater data has been accurately interpreted 
[Stofan et al., 20051. 
Task IC. Investigation of the Factors Determining the Amount of Volcanism at Coronae 
Participants: E.R. Stofan, S.E. Smrekar 
We combined the results of studies under this task with our previous PGG proposal results to better 
understand volcanism at coronae and propose an integrated hypothesis of upwelling and volcanism on 
Venus [Stofan and Smrekar, 20051. We base this framework on the model developed for Earth by 
Courtillot et al. [2003], who described three types of upwelling: primary plumes from-the core-mantle 
boundary; secondary plumes originating from shallower depths on the domes of superswells; and tertiary 
hotspots likely related to lithospheric tensile stresses and decompression melting. Despite the fundamental 
differences in tectonic style, Venus has ten Earth-like hotspot rises [Stofan et al., 1995; Brian et al., 20041. 

l i t e  ---- n l i i n c  y*-- L.n;t~ (zag., Bac&-/c&y s: 0;. 1397). 

Lwge-sca!~ flo~.\rs c~t zre ~ r p i ~ z !  ~f CQ:SW zzin?, pos~bkj: pi:& no ao-fi~e regia% i i i y  be 
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As described above, they are very similar to terrestrial hotspot rises, in that they have extensional rifts, large 
shield volcanoes, broad topographic swells, and gravity anomalies suggesting deep compensation. These 
are the primary hotspots, formed by plumes rising from the core mantle boundary. Unfortunately, we cannot 
apply the five criteria of Courtillot et al. [2003] to filly test this hypotheses: (1) long-lived tracks; (2) traps 
at initiation; (3) flux in excess of lo3 kg s-'; (4) high He or Ne ratio; and (5) anomalously low shear 
velocities indicating elevated temperatures. Given the lack of plate motion on Venus, tracks are not 
predicted and traps would be superposed by subsequent geologic activity at rises. However, Stofan et al. 
[ 19951 noted that volumes of Venusian swells are comparable to those of terrestrial swells, suggesting that 
time-integrated plume strengths are similar. Modeling of Venusian hotspots also supports this hypothesis 
pimmo and McKenzie, 1996; Smrekar and Parmentier, 19961. 

Secondary plumes are generated as when a superplume impinges on the upper mantle-lower 
mantle boundary spawning smaller thermal instabilities [Jellinek et al., 2002; 2003; Courtillot et al., 20031. 
Coronae are likely to be products of secondary plumes, originating from the shallow mantle. Small-scale 
plumes are unlikely to be able to rise through the mantle without either cooling or being swept up in large- 
scale flow patterns (e.g. Richards and Griffiths, 1988). Thus they may spawn off of larger scale convective 
upwellings (e.g., Johnson and Richards, 2003), off of convective upwellings responsible for the stresses 
inducing chasm formation, or from an upper mantle boundary resulting from mantle stratification [Phillips 
and Hansen, 1994; Smrekar and Stofan, 1997; Gonnermann et al. 20021. Large volcanoes may be related to 

melting associated with lithospheric stress [Stofan and Smrekar, 20051. 
-...mn...r p 1 L L - J  us A.. u b b u d a J  "an"" n-r - p L - n ,  ..-an oi, Fie  large flow fidk, ~iiii 'ie cla~~i3Gd BS tertiary hwispwis related to 

Task 2. Studies of Large Volcanoes on Venus 
Task 2a. Evolution of Largc ?G!CCZXXX GZ !'~zz;: Ccse Epidies 
Participants: E.R. Stofan, J.E. Guest, A.W. Brian, P.M. Grindrod, S.W. Anderson, 
We studied the detailed eruptive histories of volcanoes in Laufey Regio [Brian et al., 2004a], and a 
volcano-corona hybrid, Atai Mons [Grindrod et al., 2004; 20051. We also performed a study of all large 
volcanoes, including an analysis of their gravity [Brian et al., 2004b; Brian et al., in prep.]. Previous studies 
mapped 168 volcanoes on Venus [Crumpler et al., 19971, while recent work by Brian et al. [2004b] 
ide~tifiedl35 large volcanoes. Of these, only 14 are located on topographic rises. The others are 
distributed across the surface, with a noted concentration in the region bounded by Beta Regio, Atla Regio 
and Themis Regiones [Crumpler et al., 19971. Most of the Venusian volcanoes are larger than their 
terrestrial counterparts, with relatively low summits but extensive flow aprons [Crumpler et al., 19971. The 
volcanoes have average heights of about 1.5 km and flow aprons that extend 100's of kilometers from the 
summit. A decline in SOzover time observed by the Pioneer Venus spacecraft has been interpreted to 
possibly indicate a relatively recent eruption [Esposito, 1984; Glaze, 19991, and volcanism within the last 
10-50 my is supported by climate models [Bullock and Grinspoon, 20011. Preliminary studies of the gravity 
signatures of 33 large volcanoes by Brian et al. [2004b] find that a number of volcanoes have bottom- 
loading signatures suggesting that they may be dynamically supported, and thus still active. Kiefer and 
Potter [2000] modeled the gravity anomalies for 8 large volcanoes, calculating elastic thickness values from 
8-22 km. Brian et al. [2004b] calculate a wide range in elastic lithospheric thickness, contrary to previous 
studies that suggested that Venusian volcanoes form preferentially on thick lithosphere [McGovem and 

At Laufey Regio, volcanic material dominates the majority of the Laufey rise and is centred at three 
large volcanic edifices, Var, Tuli and Atanua Montes. Tuli Mons (13.3"N, 314.6"E) is a 300 km diameter 
volcano that lies 600 km north of the centre of the plateau. It has little relief, reaching a maximum height of 
only 0.6 km above the surrounding plains It is constructed of many small edifices which are well defined 
and display variable radar backscatters. Many display radar bright pits which are interpreted to be calderas. 
The extensive flow apron surrounding Tuli clearly overlies the surrounding plains and is composed of many 
individual flow units showing a wide range of radar backscatters, well defined margins and varying 
morphologies. Some of the longer lava flow lobes reach a maximum of 400 km fiom the centre of the 
volcano. Atanua Mons (9.5"N, 309OE) is located in the northern end of the plateau. Its flows, along with 
those from Var Mons, dominate the region, extending over 350 km from the summit. The apron of  flows 
has been divided into eight units which may indicate distinct episodes of eruptions over the history of the 
volcano. The summit region is characterised by a steep sided cone that appears to have been built up by 
flows that extend radially around it. It is capped by a circular caldera almost 10 km across. The caldera 

%!moo, 19981 J .  
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has a radar bright rim, which has been breached by a fan of lava flows on the northern side. The floor of 
the caldera is covered by radar dark material, and a 2.5 km arcuate area within the centre has collapsed. A 
second vent marked by two bright pits lies 130 km to the west of the main cone. Var Mons is a lOOOkm 
diameter volcano centred at 1.2"N 316"E. It consists of three main cones with maximum heights, west to 
east, of 1.5 km, 0.7 km and 1.7 km above its base. The middle edifice is offset to the north by 
approximately 30 km from a line connecting the other two. As observed at other volcanoes, the main 
edifices are made up of shorter more numerous flows while the outer apron consists of longer, more 
extensive flows [Guest and Stofan 1999; Stofan et al., 20011. The three summits of Var display different 
styles of eruptive centres. At the western end, a 25 km diameter steep-sided dome sits at the summit of the 
cone. Low radar backscatter lava flows, with ill-defined flow fronts surround the dome, radiating out 
approximately 50 km from the centre. Chains of pits, associated with through going fractures that trend 
along the axis of the summits, are visible around the dome. The summit of the central cone consists of a 
partially filled 30 km diameter caldera. The eastern summit region reaches the highest altitude of the three 
cones. Lavas with a range of radar backscatter characteristics have been erupted radially from the centre of 
what may once have been a steep-sided volcanic dome. These lavas have flowed down and embayed a 
second steep-sided dome (22 km across) which lies 45 km to the north. This second dome has an 8 km 
wide central depression which is partially filled with radar dark lavas. The southern part of the rim has 
been breached by flows from the dome to the south. Small shields and pits are scattered over the summit 
zixl soim zie rqx ipsd  sii iiidid fa-&, whicii iirr. iiiceiy io be h e  sm-ace nianifestation of dykes. A raciar 
bright feature with scalloped sides that appears to have been highly eroded lies midway between the 
western and central centres. It does not show any associated lava flows and has been embayed by material 
from the western summit [Brian et al., 2004al. 

Numerous other small aGd intermediate sized ( G O  km in diameter) edifices are also found on the 
rise and in the surrounding plains. The Laufey area is dominated by the flows of Var and Atanua Montes, 
which are superposed on the regional and mottled plains. There is no visible contact between flows from 
the two centres and therefore relative timing cannot be determined. Materials associated with Hulda 
Coronae at the north end of the Laufey rise overlap with flow units from Atanua, indicating the protracted 
and overlapping histories of each. Undivided corona materials in the centre of the rise are generally 
sgpeqcsed on the regional plains but overlain by deposits from the two large volcanoes. The local set of 
wrinkle ridges that surround the rise deforms the outer flows of Var and Atanua along with the regional and 
mottled plains. This indicates they were formed after the initiation of centralised volcanism [Brian et al., 
2004al. 

Detailed analysis of superposition relationships at Atai Mons area suggests the following general 
sequence of events: formation of original plains material; emplacement of sheet and digitate lava flows; 
uplift and associated radial fracturing at Atai Mons; gravitational relaxation of the topographic high causing 
a broad summit depression and exterior concentric fracturing; some lava flows from flank eruption sites; 
formation of extensional tectonic features associated with Pinga Chasm; volcanic flooding of the broad 
summit depression; M e r  Pinga Chasma-related extension; localised summit collapse causing caldera-like 
interior concentric fracturing; continued summit volcanism giving rise to a small volcano and associated 
lava flows [Grindrod et al., 2004; 20051. This history points to processes typical of both large volcanoes 
and coronae occurring contemporaneously, and does not necessarily seem to suggest evolution from one 

central depression and topographic rim) and large volcanoes (radial lava flow apron and summit calderas) 
on Venus are observed to occur at the same location. We observe tectonic and volcanic processes occurring 
simultaneously and repeatedly, indicating a complex history at this hybrid feature. This history includes 
three different periods and scale of collapse indicating possible resurgent activity. Differing lava flow 
morphologies indicate different eruption conditions both locally and/or temporally. More recent volcanism 
has been confined to the summit region, both in large and small volumes. We observe large volcano 
processes occurring in a region of relatively thick lithosphere, which may still be ongoing at present 
[Grindrod et al., 2004, 20051. Continued detailed mapping and gravity studies of other hybrid features at 
different geological settings is required to further understand the intimate relationship between coronae and 
large volcanoes on Venus. We plan to continue this analysis, analyzing other large volcanoes arid volcano- 
corona hybrids. 
Task 2b. Histories of intrusion and extrusion at large volcanoes on Venus: An investigation of summit 
diking 

f ~ ~ f i ~ e  ktc ~ZI&X. Features %$ca! of both coiorGe (izdia!kj-i%ctied ~ j k i ,  tonceiikiic fiactmes, 
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Participants: E.R. Stofan, P. Grindrod, F. Nimmo 
Radially fractured centers on Venus (sometimes termed 'novae') are distinctive radiating systems of 

graben and fractures arranged around some central topography. In this task, we used Magellan data to 
constrain some subsurface parameter at four radially fractured centers, Dhorani Corona, Lengdin Corona, 
Mbokomu Mons and Pavlova Corona. At each o f the features, the fractures radiate from a central volcano, 
some located within coronae. Radially fractures may have originated from uplift (e.g., Squyres et al., 1992) 
or fiom diking (e.g., Grosfils and Head, 1994). 

We determined the hoop strain at large radial graben by measuring the amount of extension that 
has occurred [Grindrod et al., 2005; Grindrod et al., in press, 2005bl. We have measured the depths and 
wall dip angles of several large radial graben using two different methods. We find depths of 0.1 to > 1 
km, with most within the range of about 0.3 to 0.9 km. We found the dip angles of the graben walls to be 
about 36", consistent with primary talus slopes fiom collapsed fault scarps. By assuming an original fault 
dip angle of 60" we determined the extension at individual graben to be of the order of 0.5 to 1 km for 
graben typically between 5 and 10 lan wide. We used the extension to estimate the hoop strain, and found 
varying levels of strain at each feature, but strain levels are generally high and concentrated within a narrow 
region. The observed strain is too large to be explained by previous plume models of uplift and also by 
magma chamber inflation. We therefore conclude that subsurface dikes must have made a significant 
contribution to the formation of the large radial graben at the RFCs, as well as being responsible for the 
11umtxuus bIIlsiiler fiiiciureb present. Gur resuirs suggest rhar measurement of strain at raciiai graben is a 
successful way to determine the relative amount of construction and uplift at radially-fractured centers 
[Grindrod et al., in press, 2005bl. 

Summary 
The research on coronae and large volcanoes described above has permitted us to better constrain the 
formation of these features [Brian et al., 2004; Grindrod et al., 2005a; Grindrod et al., 2005b; Martin et al., in 
prep.], contributing to our overall understanding of how volcanotectonic features evolve on the surfaces of 
terrestrial planets. In addition, we synthesized these data to propose an overall model of plume-related feature 
on Venus and how this compares to Earth [Stofan and Smrekar, 20051. We also integrated our understanding 
of the fomition of these features to Setter constrain the geologic hisiov of resurfacing on Venus [Stofan et 
al., 20051, providing new constraints on a controversial subject in Venus research. 
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A Volcano/Corona 'Hybrid': in press, Geol. SOC. London, 2005. 
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